
Finding Bounded Rational Equilibria
Part 11: Alternative Lagrangians and

Uncountable Move Spaces

David H. Wolpert*

November 4, 2004

Abstract
A long-running difficulty with conventional game theory has been how

to modify it to accommodate the bounded rationality characterizing all
real-world players. A recurring issue in statistical physics is how best to
approximate joint probability distributions with decoupled (and therefore
far more tractable) distributions. It has recently been shown that the
same information theoretic mathematical structure, known as Probability
Collectives (PC) underlies both issues. This relationship between statis-
tical physics and game theory allows techniques and insights &om the
one field to be applied to the other. In particular, PC provides a formal
model-independent definition of the degree of rationality of a player and
of bounded rationality equilibria. This pair of papers extends previous
work on PC by introducing new computational approaches to effectively
find bounded rationality equilibria of common-interest (team) games.

1 INTRODUCTION
The fields of statistical physics, game theory, and distributed control/optimization
share one fundamental characteristic: they are all concerned with how the prob-
ability distribution governing a distributed system is related to the function&
that it optimizes. This shared characteristic provides the basis for a mathe-
matical language for translating many of the concepts of those fields into one
another. This mathematical language is known as Probability Collectives (PC)
[l, 2 ,3 ,4 , 5, 61. By allowing us to transfer theory and techniques between those
fields, it provides a means of unifying them.

This pair of papers introduces computational techniques fiom PC for effi-
ciently finding bounded rational equilibria of noncooperative games. The iirst
paper starts with a review of PC and how to use it to formalize bounded ra-
tionality [7]. Also in that paper are a review of two of the previously explored

'D. Wolpert is with NASA Arne k a r c h Center, Moffett Field, CA, 94035
dhw@ptolemy.arc.nasa.gov

- .

techniques for finding bounded rational equilibria, Brouwer updating and Near-
est Newton updating. After this that paper introduces iterative focusing, a new
set of techniques for finding full rationality equilibria.

Due to space limitations, several other schemes for finding bounded rational
equilibria could not be presented in that first paper. They are instead introduced
in this second paper. This second paper also shows how to extend all of the
approaches for finding equilibria (from both papers) to the case of uncountable
move spaces of the players. Some issues that arise in practice when running
these algorithms are also discussed here.

The version of Probability Collectives considered in this paper, involving
product distributions, is called “Product Distribution” (PD) theory[l]. It’s
important to note that PD theory also has many applications in science beyond
those considered in this paper. For example, see [3, 4, 8, 9, 10, 5, 6, 111 for
work concerning distributed control and to distributed optimization. See also
[12, 13, 101 for work showing, respectively, how to use PD theory to improve
Metropolis-Hastings sampling, how to relate it to the mechanism design work
in [14, 15, 16, 171, and how to extend it to continuous move spaces and time-
extended st rat egies.

Throughout these papers 6 functions are either Dirac or Kronecker as ap-
propriate, integrals implicitly have a measure appropriate to the cardinality of
the underlying space, and 0 is the Heaviside step function.

2 Variations of Previous Schemes and Practical
Issues

In this section we first present some of the salient equations from [7] for com-
pleteness. We then show how to modify the Monte Carlo process used in parallel
Brouwer updating to avoid the “thrashing” problem. Next we present some al-
ternatives to Maxent Lagrangians for the case where the ultimate goal is finding
argmin,G(z), i.e., when optimizing the game reduces to a minimization prob-
lem. We end with a discussion of issues that arise in practice.

2.1 Salient Equations
The “Maxent” or “qp” Lagrangian discussed in [7] is

having minimizing product distribution q given by

qi(zz) 0: e-Eq-.(G14. (2)

Steepest descent of the Maxent Lagrangian forms the basis of the Nearest New-
ton algorithm. Direct application of the equations that minimize it form the

basis of the Brouwer update rules. The “pq” Lagrangian is instead minimized
by the the product of the margin& of the Boltzmann distribution f l .

These and other update rules are described in [7], and can all be written
as multiplicative updating of q. The following is a list of the update ratios
~~,i(xi) E qj”(x i) /q: (x i) of some of those rules. In all of these FG is a proba-
bility distribution over x that never increases between two x’s if G does (e.g.,
a Boltzmann distribution in G(x)). In addition const is always a scalar that
ensures the new distribution is properly normalized and LY is a stepsize.’

Gradient descent of qp distance to FG:

Nearest Newton descent of qp distance to FG:

Brouwer updating for qp distance to FG:

p q t (M F C l I Z i)

9: (x i 1 const x

Importance sampling minimization of pq distance to FG(z):

(5)

Iterative focusing of 4 with focusing function FG(x) using qp distance
and gradient descent:

Eqt (~ [F G] I xi) + In[‘ f (z i)

(7)
-1 const

1 - CY{ qt (xi 1 I-qto

Iterative focusing of 4 with focusing function FG(z) using qp distance
and Nearest Newton:

l A s a practical matter, both Nearest Newton and gradientrbased updating have to be
modified in a particular step if their step size is large enough so that they would otherwise
take one off the unit simplex. This changes the update ratio for that step. See [9].

Iterative focusing of 4 with focusing function FG(z) using qp distance
and Brouwer updating:

I terative focusing of 4 with focusing function FG(z) using p q distance:

Note that some of these update ratios are themselves proper probability distri-
butions, e.g., the Nearest Newton update ratio.

2.2 Modifications to the Monte Carlo Process of Parallel
Brouwer

As described in [7], parallel Brouwer updating can be subject to “thrashing”,
in which each player’s update confounds the updates of the other players. The
simplest way to mitigate this is by not having each player i jump all the way
from its current distribution q, to the new one recommended by parallel Brouwer
updating, 4:. Instead one can have each i only jump part way in the direction
from q, to 4:. (This in fact is what is done in practice.) This subsection presents
an alternative approach.

To begin, note that we would not get any thrashing in parallel Brouwer if
rather than the function Eq(G I z,), each agent i performed its update using
E,(G 12,) for some distribution T that is independent of q . The natural choice
of T is exactly the distribution that q is designed to approximate well, namely
the Boltzmann distribution ’.

To implement this modification, we need to have all agents i simultaneously
estimate their associated functions E,(G I z,) rather than Eq(G I z,). Precisely
because q should approximate T well, we can do this using our Monte Carlo
samples of q, simply by modifying how each agent uses those samples. The
general idea is to use those samples of q as a proposal distribution for generating
samples from T .

As an example, we can use the samples of q to estimate the integral E,(G I
2,) via importance sampling. To do this we write

and then sample q, using empirical averages across those samples to estimate
both the quantity in the square brackets in the numerator of our integral and

’Note that in doing this, we change the equilibrium distribution from that of 2. NOW it is
given by q,(z,) o(e-oEn(G12*)

I

the quantity in square brackets in the denominator. (Note that we only need to
know 71 up to an overall normalization constant to do this.) Under the original
sampling scheme, for each of its possible moves z,, agent i forms the uniform
average of the G values that arose when it made that move, and takes that
average as its estimate of E,(G I 2%). Under the modified scheme, it would
instead estimate the function E,(G 1 x,) with a weighted average of those G
values. The weights would be the associated values x (z) / q (~) . ~

Another way to estimate E,(G 1 z,) using samples generated from q would
be via a Metropolis-Hastings random walk. Under this scheme q would be a
proposal distribution, and the points it generates would be kept either if they
raised r(z)/q(z), or, if not, if the flip of an appropriately weighted coin comes
up heads. At the end of the Monte Carlo block, each agent i would form
the uniform averages over the kept points, thereby forming an estimate of its
function E,(G 12,) ‘.

Integration of parallel Brouwer and the Metropolis-Hastings algorithm can
be viewed other ways’than as a modifcation to parallel Brouwer updating.
In particular, it can be viewed as a modification to standard optimization via
simulated annealing. The modiiication is that the proposal distribution is dy-
oamically updated in an “intelligent” way, rather than (as in the conventional
simulated annealing algorithm) being pre-hed. This is the idea behind the
Intelligent Coordinates algorithm [18].

In addition to mitigating the thrashing problem, the replacement of E,(G I
2,) with E,(G I 2,) sometimes results in new equilibria that better capture
inter-agent dependencies in G. In particular, they will sometimes avoid the
problem of spurious equilibria that can arise with a Lagrangian over product
distributions, in which the equilibinrm product distribution has high values for
some z’s that have poor G values.

As an example, say we have three agents all with binary move spaces, (0 ,
1). Say that the 23 = 0 plane of G values is given by G(O,O, 0) = 1, G(0, 1,O) =
G(l,O, 0) = .5, and G(1,1,0) = 0, while when 2 3 = 1, G(z) = .5, regardless
of z1 and 2 2 - So we would like to have the equilibrium distribution be biased
towards (1 ,1,0) . However in one eqdibrium of Eq. 2, agents 1 and 2 would have
uniform distributions, giving a uniform distribution over their joint moves. This
uniformity of q (x l , q) then means that agent 3 would not have any basis for
choosing one or the other of its two moves: E,(G I 23) would be independent
of 2 3 . Accordingly, agent 3 would also choose a uniform distribution. The
resultant product distribution would be uniform, and therefore would not be
low over all 2’s with poor G values ‘.

3Note that these weights can be communicated to all the agents by the same system that
broadcasts G values to all the agents, if first all agents communicate q, values to that system.

4Ref. (121 presents a detailed analysis of the use of samples of a product distribution to
do MetropolisHastings sampling. That work does not directly concern the issue of optimiza-
tion. Rather it concentrates on using Probability Collectives to improve the usual goal of the
MetropolisHastings algorithm, namely sampling a provided probability distribution.

51ntuitively, the problem is that the move spaces of the agents do not factor the joint
move space in a way that is ualigned” with G. See [13, 101 for a discussion of how to use
semi-coordinate transformations of the move spaces to circumvent this problem.

Now consider the modified Monte Carlo process. In this new process agent
3 chooses its move based on E,(G I 2 3) . However since it is convex, 7r is
most peaked for 2 3 = 0, unlike the equilibrium q under Eq. 2. So the values of
E,(G I 2 3) now would distinguish between the two possible moves of 2 3 , biasing
it towards the move 0. Similarly x1 and 2 2 would both be biased to equal 1. So
our equilibrium distribution would be biased towards (1, 1, 0), which is exactly
what we want.

Note that schemes like gradient descent always have the same equilibrium as
that of Brouwer updating if one replaces E,(G I xi) in thos schemes, whatever
function one uses to replace E,(G I xi) (so long as it is the same function in
both schemes). Accordingly, replacement of E,(G I xi) with E,(G I xi) may be
beneficial to steepest descent algorithms, in addition to parallel Brouwer.

2.3 Variants of Maxent Lagrangians
Consider the use of iterative update rules for the q, in concert with Monte Carlo
sampling of q. In such scenarios, at each stage of the iterative updating, for each
of her moves E,, each player i has an empirical estimate of the distribution P (G I
2,) (and therefore of any distribution P(f(G) 1 2,) for invertible f : R -+ W).
Every player i uses her empirical estimate according to a pre-set algorithm -
potentially varying from one player to the next - to determine how to update
her distribution q,. Our task as system designers is to choose those pre-set
algorithms in such a way that the ultimate goal of the updating is achieved as
quickly as possible.

In the update rules discussed above each empirical distribution is reduced
to an expectation value which is then used to perform the update. m l e this
need not be the case in general, update rules based on expectation values form a
very rich set, including many rules not investigated previously. This subsection
introduces some such novel update rules that are based on expectation values.

Both the qpKL Lagrangian and pq-KL Lagrangians discussed above had
the target distribution be a Boltzmann distribution over G. For high enough
p, such a distribution is peaked near argmin,G(z). So sampling an accurate
approximation to it should give an x with low G, if ,B is large enough. This
is why one way to minimize G is to iteratively find a q that approximates the
Boltzmann distribution, for higher and higher p.

However there are other target distributions that grow larger as G grows
smaller e.g., logistic functions of G, step functions (i.e., Heaviside functions) of
G , etc. So one set of alternatives to the Lagrangians discussed above is to choose
some alternative target distribution(s), and for each one find the q minimizing
p q or qp KL distance to it.

Return now to the Maxent Lagrangian. Say that after finding the q that
minimizes the Lagrangian, we IID sample that q , K times. We then take the
sample that has the smallest G value as our guess for the 2 that minimizes G(z).
For this to give a low 2 we don’t need the mean of the distribution q(G) to be
low - what we need is for the bottom tail of that distribution to be low. This

suggests that in the E(G) term of the Maxent Lagrangian we replace

Q[K - J&’ q(x’)e[G(x) - G(x’)]]
K

4(x) + d x)

This new multiplier of G is still a probability distribution over x. It equals 0 if
G(x) is in the worst 1 - K percentile (according to distribution q) of G values,
and K-’ otherwise. So under this replacement the E(G) term in the Lagrangian
equa-ls the average of G restricted to that lower d t h percentile. For K. = K-’,
our new Lagrangian forces attention in setting q on that outlier likely to come
out of the K-fold sampling of q(G).

As usual, one can use gradient descent and Monte Carlo sampling to min-
imize this Lagrangian, taking care to account for q’s now appearing twice in
the integrand of the E(G) term. Note that the Monte Carlo process includes
sampling the &&ibution e[K- / q(z‘)e[G(z)-G(z’)ll n as well as the
ql. This means that only those points in the best n’th percentile are kept, and
used for all Monte Carlo estimates. This may cause greater noise in the Monte
Carlo sampling than would be the case for IC = 1.

As an example, say that for agent i, all of its moves have the same value of
E(G 1 x,), and similarly for ageat j, and say that G is optimal if agents i and j
both make move 0. Then if we modify the updating so that agent i only considers
the best values that arose when it made move 0, and similarly for agent j , then
both will be steered to prefer to make move 0 to their alternatives. This will
cause them to coordinate their moves in a way that improves the Lagrangian.

A similar modifkation is to replace G with f(G) in the Maxent Lagrangian,
for some concave nowhere-decreasing function f(.). This would distort G to
accentuate those x’s with good dues. Intuitively, this will have the effect of
coordinating the updates of the separate qI at the end of the block, in a way
to help lower G. The price paid for this is that there will be more variance in
the values of f (G) returned by the Monte Carlo sampling than those of G, in
general.

Note that if q is a local minimum of the Lagrangian for G, in general it
will not be a local,minimum for the Lagrangian of f (G) (the gradient will no
longer be zero under that replacement, in general). So we can replace G with
f (G) when we get stuck in a local minimum, and then return to G once q gets
away from that local minimum. In this way we can break out of local minima,
without facing the penalty of extra variance. Of course, none of these advantages
in replacing G with f (G) hold for algorithms that directly search for an x giving
a good G(z) value; x is a local minimum of G (z) * x is a local minimum of

An even simpler modification to the E(G) term than those considered above
is to replace G(x) with 8[G(x) - K]. Under this replacement the E(G) term
becomes the probability that G(x) > K. So minimizing it will push q to x with
lower G values. For this modified Lagrangian, the gradient descent update step

f (G(x))-

I

adds the following to each qi(zi):

In gradient descent of the Maxent Lagrangian we must Monte Carlo estimate
the expected value of a real number (G). In contrast, in gradient descent of this
modified Lagrangian we Monte Carlo estimate the expected value of a single bit:
whether G exceeds K. Accordingly, the noise in the Monte Carlo estimation for
this modified Lagrangian is usually far smaller. In addition, just like in descent
of the Maxent Lagrangian, the Monte Carlo estimation for Eq. 11 is well-suited
to a distributed implementation.

In all these variants it may make sense to replace the Heaviside function with
a logistic function or an exponential. In addition, in all of them the annealing
schedule for K can be set by periodically searching for the K that is (estimated
to be) optimal, just as one searches for optimal coordinate systems [19, 11.
Alternatively, a simple heuristic is to have K at the end of each block be set SO

that some pre-fixed percentage of the sampled points in the block go into our
calculation of how to update q.

Yet another possibility is to replace E(G) with the K’th percentile G value,
i.e., with the K such that Jdz’ q(z’)@(G(z’) - K) = n. (To evaluate the
partial derivative of that K with respect a particular qz(zz) one must use implicit
differentiation.)

2.4

There are a number of practical issues common to all the schemes elaborated
above. The update rules given above are all completely distributed, in the sense
that each agent’s update at time t is independent of any other agents’ update
at that time. Typically at any t each agent i knows q i (t) exactly, and therefore
knows In[qi (j)] . However those update rules all involve conditional expectation
values which often cannot be evaluated in closed form. As described above, one
can circumvent this problem by having the expectation values be simultaneously
estimated by all agents via repeated Monte Carlo sampling of q to produce a
set of (x ,G(z)) pairs. Those pairs are used by each agent i to estimate the
expectation values it needs (e.g., E(G I zi = j)) , and therefore how to update
its distribution.

Consider the case where we do need to use Monte Carlo to estimate condi-
tional expected values of some f(z), and z is high-dimensional. In this scenario
block-wise Monte Carlo sampling to estimate conditional expectation values can
be slow. The estimates typically have high variance, and therefore require large
block size L to get an accurate estimate.

One set of ways to address this is to replace the team game with a non-
team game, Le., for each agent i have it estimate quantities based on a private
utility gi rather than G (e.g., based on E(gi I zi = j) rather than E(G I zi = j)

Heuristics for improving the update rules

'. Each such private utility is chosen so that the Monte Carlo estimates have
much lower variance than those based on G, without having any bias [l, 131.

As an example, say we are doing gradient descent of the Maxent Lagrangian.
Replace the values of G(z) recorded by agent i in the Monte Carlo process with
the values of g,(z) = G(x) - D(z-%), where D(z-,) c(J dx: w(z:)G(x:, z-,) for
weighting factors w, determined by how frequently 2: arose in the Monte Carlo
process. This replacement speeds the convergence of the Monte Carlo process
to accurate estimates of the true expectation values E(G I z,) [l]. Furthermore
it can often be done with minimal communication overhead between the agents.
Indeed, often it is easier to evaluate such a g,(z) than G(x) . The worst case is
where G(z:, z-,) must be explicitly reevaluated for each of the possible z:. Even
there though, those extra re-evaluations are often not a large extra expense. This
is because they can be used to augment the Monte Carlo samples of values of
gz(x:) for z: # z, as well as those for z: = 2,.

Another useful technique is to allow samples from preceding blocks to be
reused. One does this by hst "aging" that data to reflect the fact that it
was formed under a different q-, . For example, one can replace the empirical
average for the most recent block k,

with a weighted average of previous expected G's,

for some appropriate aging constant n.7
Typically such ageing allows L to be vastly reduced, and therefore the overall

minimization of L to be greatly sped up. For such small L though, it may be
that the most recent block has no samples of some move z, = j. This would
mean that G , , J (k) is undefined. One crude way to avoid such problems is to
simply force a set of samples of each such move if they don't occur of their own
accord, being careful to have the x-, formed by sampling q-% when forming
those forced samples.

There are numerous other techniques that are useful in practice. For ex-
ample, typically one must use such techniques to decrease the step size in the
descent rules (Le., gradient descent and Nearest Newton) as one nears the bor-
der of Q. Similarly, often the non-descent update rules (e.g., Brouwer) can be
improved by making only a partial "step" at each iteration, Le., by averaging
the current q with the q given by the update rule as listed above, rather than
by replacing it with that q.

6Formally, this means that each agent i has a separate Lagrangian, for example formed
from the Maxent Lagrangian by substituting gi for G. See [19] for the relation of this to
bounded rational game theory.

'Not all preceding G,, j (n) need to be stored to implement this; exponential ageing can be
done online using 3 variables per (i, j) pair.

3 Empty bins, uncountable x
There are several circumstances in which naive empirical averaging of Monte
Carlo samples to estimate update terms of the form E (H I z,) will not work.
For example, consider the simplest situation, in which we have a finite number
of agents and a finite move space for each agent. Even in this situation, if there
are not enough Monte Carlo samples, it may be that for some potential move
of some agent there are no instances in any of the Monte Carlo samples (in any
of the blocks) in which that agent made that move. In that case, we cannot use
empirical averaging to estimate the associated E (H I z,). As another example,
say we have a large (but finite) number of Monte Carlo samples, but some agent
has an uncountable number of potential moves. Then that agent will have no
samples for almost all of its potential moves.

3.1 Exploiting Supervised Learning
All of these problems can be addressed by exploiting the fact that we are work-
ing with a product distribution, in concert with the techniques from the field
of supervised learning techniques (i.e., classification and regression) [20], which
concern precisely the issue of estimating E (H I z,) from a finite set of Monte
Carlo samples. As an example, consider the first problem case mentioned above,
in which there a finite number of agents all with a finite number of potential
moves, but we have too small a set of Monte Carlo samples to have samples of
all moves for all agents. For this scenario each agent i must estimate E (H I z,)
for all z, using a “training set” of Monte-Carlo-generated (z,, H) pairs that does
not extend over all 2,. This is a standard problem in supervised learning [20].
Often it can be addressed by extrapolating from those z, which did occur in the
training set to infer estimates of E (H I 2,) for the other z,. Those estimates
can then be used to form the updates.8

Similar techniques can be used even when the x, are uncountable. Moreover,
in general a supervised learning fit to the Monte Carlo data is parameterized by
a finite set of numbers, and therefore for a finite number of agents those fits can
be stored in a finite computer, regardless of the cardinality of the move spaces
of the agents. However for uncountable move spaces we have the extra problem
of how to store, update, and sample q, which is now a density function rather
than a probability distribution.

Fortunately, given the regression E (H I E,), there are several ways to update
and sample q(z) without ever explicitly storing the values of q(z) for all possible
z. By using such sampling schemes in concert with the regression scheme, we
can implement Monte Carlo updating for all three of the problematic scenarios
described above. As outlined in this section, the key is to write the update rules
in terms of multiplicative update ratios giving the new q in terms of the old one,
as in the list presented above.

‘In general, whenever it can be applied, such extrapolation should also be used to improve
the estimates of E (H I zi) for those xi values that do occur in the training set.

3.2 Uncountable x and finite parameterizations of q

For all of these update rules listed above, when x, is a compact subset of a
Euclidean space, one can still numerically perform the update in the conven-
tional way if the associated probability density function is replaced by a (finite-
dimensional) paramaterization of it. The simplest way to do that is, in essence,
by binning z,. This means that agent i now has a finite set of moves, one for each
of its bins. The full density function is parameterized by the real numbers giving
the probabilities agent i assigns to each of its bins, according to some preset
rule. One example is where the probability density function has uniform density
in each bin (as in Reiann integration). Another is where the density function
is linearly increasing/decreasing across each bin,-in such a way khat-the density
function is everywhere contikous (as in the trapezoidal rule for integration).
Formally, such binning schemes are semi-coordinate transformations [lo, 61.

With such a scheme, one first applies supervised learning techniques to the
Monte Carlo samples to determine the regression E(H I 2,). For each bin j,
having borders a3 and b3, one then numerically computes two integrals:

The ratio of those two integrals determines the t imet e,upected value of H
conditioned on x, being in bin j. (For bins that are thin enough on the scale
of variations in the regression and/or q ~ (x z) i these integrations can be replaced
by simply evaluating the integrands at the centers of the bins.) This then gives
the expected H conditioned on x, being in bin j for all bins j. This is precisely
what is needed to update of those bins’ probabilities, according to whichever of
the update rules listed above one is using.

Note that this scheme can be done even when the number of bins is far
larger than the number of Monte Carlo samples. This contrasts with the case
of estimating the conditional expectation value of H given bin j based only on
averaging of all the Monte car10 samples that fall in that bin. Intuitively, using
regression allows samples from neighboring bins to be used to help form the
estimate.

While some binning schemes can be quite sophisticated, sometimes it would
be advantageous to use a merent parameterization. Often this can be done in a
way that replaces the regression algorithm with a density estimation algorithm,
using the usual Bayesian equivalence of regression and density estimation. For
example, choose the masking function F G (~) in Eq. 10 to be 8 (K - G (x)) ,
Evaluating such an update based on a set of Monte Carlo samples can be done
with conventional probability density estimation algorithms [ZO]. One simply
collects the subset of the samples for which G(z) < K , and runs the density
estimation algorithm on those points to estimate the density at 2,.

Intuitively, in this approach the Monte Carlo samples encode the probability
density function qo. For a smooth density estimator, this scheme will also ensure
q*(x,) # 0 Vx,, thereby mitigating the problem that a statistical fluctuation of
never picking x, in some Monte Carlo block would guarantee it is never picked

in the future. Similar schemes can be used for non-step function choices of FG.
For example, one can use the value FG(x) for each x in the Monte Carlo sample
as a weighting factor for that sample in a kernel density estimator.

3.3 Parameterless sampling

One problem with parametric schemes like these is that since q is given by a
set of explicitly stored real numbers, one is always limited in how finely one can
capture q by the finiteness of one’s computer’s memory. More importantly, if
one has many parameters (to capture q with high accuracy), then updates can
be computationally expensive] since each parameter has to be updated in each
iteration. For example, with binning, one has to go through the update rule for
each bin.

Alternative schemes use the regression E (H I z,) to apply any multiplicative
update rule for uncountable 3: without any finite-dimensional parameterization
of q. With such schemes, in each step the full density function given by an
uncountable number of real numbers is implicitly updated (e.g., via gradient
descent). However that density is never explicitly represented. Instead, all
we ever explicitly do is sample it, potentially evaluating it at a finite number
of points to do so. Intuitively, via our regression, the Monte Carlo samples
themselves serve as our “parameteri~ation’~ of q(x).

Define Rq,, 3 maxz,rq,2(z,). Then for any t > 1 we can generate a sample
from qf if we can implement the following three-step procedure:

1) Sample from 9f-l to get a point x i .

2) Toss a coin with probability of heads

rqt-1 ,i (x i)
Rqt-i,i

3) If the coin came up heads, keep our x, as the desired sample of qt. Otherwise
return to (I) . ~

Note that this scheme will also work if we can only evaluate the values
rqt-l, ,(x,) up to an overd proportionality constant, so long as Rqt-i,, is rede-
fined to include that constant. Similarly the scheme will work so long as Rqt-i,,
in step (2) is replaced by any fixed quantity that is bounded below by the actual
Rqt-1,*. So in practice we can set that value in step (2) to some small factor
multiplied by the maximal value of over some set of values xi of rqt-i,z(xi). Ac-
cordingly we can sample qt if we can sample qtW1, can evaluate A x rqt-i,z(3:,)

gProof Since this three-step sub-sampling scheme is a stochastic process, it generates Z,’S

according to some distribution ~(2,). So to prove that T = CZ:, it suffices to note that for any

two values x,, xi, $$ = $&. QED

for any particular z, and iixed (though perhaps unknown) constant A, and can
evaluate a lower bound on A x Rqt-l,,.

Performing this three-step procedure for all agents will give us a sample of
the joint distribution qt. We then add that joint sample to the training set
and form a new regression (to be able to calculate ~ ~ t , , (z ,)) . We then use that
new regression to find a lower bound on Rqt,z. This allows us to repeat the
three steps, and thereby form the next update to q. Generalizing, if we set q1
to some easily sampled distribution (e.g., the uniform distribution), and can
always perform the stipulated regressions, then with our three-step procedure
we have an iterative algorithm for sampling qt(z) = n, d(z) for all t. Then, at
the end of the run, we use the hal joint samples as guesses for the solution z
to our optimization problem.

Say we are at iteration t, having formed samples of all of the qf for t' < t
via the three-step procedure, and therefore having been able to evaluate Rqtl,,
and T ~ ~ I , ' (z ,) for any z,, t' < t. To employ the precise scheme outlined above
to sample q: we would first sample q:, and then send that sample through t
successive stochastic keep/reject steps. The probability of a rejection at each
step in that chain is given by how small the ratio r $ ~ ~ ~ ~ ~) IS . for typical 5,

generated by sampling q:. For large enough t , even if the rejection probability
for each step in the chain is small, the probability of a rejection somewhere
along such a chain - followed by starting all over with a new sample of q: -
may be quite high. Accordingly, this three-step procedure might take a long
time to actually generate the desired sample of q:.

As an alternative, note that by hypothesis we can evaluate rqt' ,,(z,) Vz,, t' <
t , up to a t'-dependent overall proportionality constant, which without loss of
generality we set to 1. So write

t-1

q3.1) = 4f.(G) I-I Tqt+4
t'=l

As long as we are sure that the product on the righthand side is finite and never
negative, we can employ a modif3ed version of our sub-sampling procedure. To
do this define

t-1

In analogy to the earlier case, we can form an estimate of a (conservative lower
bound) on Ci ({ qt' : t' < t}) by evaluating c, ({qt' : t' < t} , zi) for many zi.

As before, the first step of OUT procedure is to sample q j to produce a sug-
gested sample of q:. We then accept that suggested sample with probability

ci({qtl : t' < t } , xz)
Ci({Qt' : t' < t })

resampling q: if we reject the suggested sample. This gives us our desired sample
of q,"(z,). Doing this for all z then gives our sample of qt(x).

Exactly as before, such a sample of qt can be combined with our previous
Monte Carlo samples to provide a training set for a supervised learning algo-
rithm that forms a regression Eqt(H I 2,). We can use that to evaluate ~ ~ t , ~ (x ,)
for any x,, up, to an overall proportionality constant. So we can evaluate the
product c, ({ qt : t' < t + I), x,) for a large number of x,, and thereby estimate
(a lower bound on) C,({qt : t' < t }) . This then allows us to generate a sample
of the next distribution qtf l by using subsampling. So we again have an itera-
tive algorithm. However this one avoids the need for more than one keep/reject
step in forming the sample of qt for any t. (The price paid for this is a more
expensive numerical evaluation of the associated m a .)

3.4 Including density estimation
A remaining potential difficulty is that as q: gets more and more peaked, we

might get a lot of rejections when we subsample, since the ratio c$iqt, t,>tl)
will be very small for almost every point formed by sampling q:. More gen-
erally, if we are only generating candidate x, by examining points generated
by sampling q:, then we won't have reduced the overall computational burden
in finding x with low G values compared to the simple process of sampling q:
without any subsequent subsampling.

We can address this problem by periodically using a density estimation d-
gorithm to produce an estimate of the current distribution, an estimate that
is easy to sample. We don't use that estimate directly instead of 4," however,
since it won't exaclty equal q," in general. Instead, we use it as a proposal dis-
tribution in importance sampling from q:. More precisely, at time step t , say
we run a density estimation algorithm on our Monte Carlo samples to form a
density t,"(x,) that both can be easily sampled and with high probability is a
good approximation to 4,". Write

qt' t'<t A)

q f (4 Q(x*) d,({qt' : t' < t } , 4 h) (15)

where

Then define

As usual, without loss of generality we can ignore any overall proportionality
constants in the evaluations of d:(zi) and/or ci({qt' : t' < t},zi) (so long as
the same constants appear in the evaluation of Di({qt' : t' < t}, G:,i)), and can
replace the constant Di({qt' : t' < t}, $, i) with a lower bound on it.

In the first step of the new version of our three-step procedure we generate
a sample of $:(xi).
to sample $(xi).)

(In the original three-step procedure the analogous step was
We then keep that sample with probability

forming a new sample if the suggested sample is rejected. In this way .we can
exactly sample the density function q:(zi). Moreover, assuming our density esti-
mate is reasonably accurate, and that our lower bound on D,({qt' : t' < t} , ij:, i)
is not too much lower than the actual d u e , the ratio giving our acceptance
frequency will not be too small.

In practice, we may want to exploit algorithms that combine the genera-
tion of 4: from the training set and the sampling of that distribution. As an
illustration, say zi is the set of r e d ambers between 0.0 and 1.0, and write
the cumulative distribution function of q: as CDF,:. Then one way to form a
sample of q:(z,) is to generate a point ti by uniformly sampling [O.O, 1.01, and
then return the value [CDF,;]-l(&). This suggests an algorithm in which we
first use our training set of Monte Carlo samples to form CbF,:, an estimate
of CDF,;. We then sample [O.O, 1.01 uniformly to produce ti, and return the
value [CbF,:]-l(<i) .

As an example of a rough, fast way to do this, say there are N separate
zi values in our training set, the set of those values being written as {4}.
D e h e I (4) as the interval of all real numbers that are closer to 4 than to
any other training set element. Also d e h e the function int(zi) as the greatest
integer below 2,. Then our algorithm for sampling (an estimate of) q:(zi) would
consist of the following steps:

..

A) Sample [O.O, 1.01 uniformly to generate ti.

B) Sample uniformly from within the interval 1.
Similar schemes can be used when zz is more than onedimensional, for example
by substituting Voronoi cells about training set x, values for intervals about
them.

Say we are able to sample q;(xz) exactly, either by using subsampling of
points generated from 4,' or by using a density estimate 4;. Then we can
use the original three-step procedure recounted above to sample qf"(zz) =
q;(z*)r,t,,(x). Similarly, to sample qT(z,) for subsequent T > t + 1, we can
use the modified version of the threestep procedure based on a product of
~,~f,~(z,)'s. In the current context, this means we sample q:(z,), and then

keep/reject those samples according to the ratios

cz({qt' : t < t' < T } , xz)
Cz({qt' : t < t' < T })

.

Once T is so much larger than t that we start getting a lot of rejections, we can
rerun our density estimation algorithm.

3.5 Performing the needed evaluations

Say we are at the t'th iteration, and assume we already have a full Monte Carlo
sample of qt-l. We need to be able to evaluate Tqt-1,,(x,) to form a sample of qt
using our three-step procedure. We can do this for any of the update rules listed
above, so long as can calculate ln(qf-'(z,)), Eqt-l(1n(FG) I z,), E,t-i(ln(FG)),
S(q;-l), s d x , E,t-l(ln(FG) I x,), and sdx, ln(q;-'(x,)). The first two of these
depend on z,, and the last four are averages over all x,.l0

We can perform our calculations as follows:

i) Assume that we can evaluate q;-l(x,) Vx,, just as we are able to sample qt-'.
That takes care of the first term.

ii) As usual, to estimate I3,t-l (ln(FG) I xi), apply any handy supervised learning
algorithm (e.g., Gaussian nearest neighbor averaging) to the training set of
(xi, ln(FG(z))) pairs given by the Monte Carlo samples of qt-l.

iii) Given our supervised learning algorithm, use numerical integration to esti-
mate s d x , E,t-l(ln(FG) 1 xz). In practice, if the integrand is quite peaked, it
may make sense to assist the integration by first using a density estimation al-
gorithm to form an easily sampled estimate of q:(x ,) . Numerical integration via
importance sampling can then be used with that estimate as the proposal dis-
tribution to do the integration. Assuming the peaks of qf(z,) roughly matches
those of E,t-i(ln(FG) I xz), such integration should be relatively efficient.

Given our assumed ability to evaluate qf-l(x,) Vx,, we can similarly use our
supervised learning algorithm and numerical integration to estimate E,t-l (h(FG)),
again using density estimation if need be. Alternatively, we can estimate Eqt-i (ln(FG))
simply by averaging the values in the training set of ln(FG) .ll

iv) Similarly, we can use numerical integration to estimate dx, ln(qf-'(z,)).
and/or S(4t-l). A simpler approach to estimating the entropy, analogous to the

'OThose last four arise in calculating the additive const term in one or the other of the
update rules, and where needed implicitly assume a priori bounds on their integrals. Note
that any multiplicative const terms are irrelevant, since as described above they cancel out in
the subsampling.

"It probably makes most sense to do this if our supervised learning algorithm is one for
which we're a priori guaranteed that such averaging gives the same answer as numerical
integration.

. ’

.
averaging process of step (iii), is to simply estimate the entropy as the empirical
average of the values of ln[qi(zi)] over the Monte Carlo samples.

Doing all this, we can evaluate every term that arises in our subsampling
procedure. This allows us to sample qt. For the next iteration, this ability to
sample qt is used again, this time to do part (1) of the subsampling procedure
for generating samples of qt+’. To perform parts (2) and (3) we need to eval-
uate the update ratio, and therefore must be able to perform (some subset of)
steps (i) through (iv) above. Since by hypothesis we can evaluate q t - l (z) for
any z, and can evaluate the update ratio rqt-1,%(z%) (up to irrelevant propor-
tionality constants) for any such z,, we can evaluate qt(z) for any z Therefore

Monte Carlo samples of qt. Therefore we can perform parts (2) and (3) of our
subsampling procedure. So we can generate a sample of qtf l .

we canperform step (i). -We c m also perform steps (ii) through (iv) using the - . . - - - -

4 Conclusion

A longrunning difficulty with conventional game theory has been how to m o m
it to accommodate the bounded rationality characterizing all real-world play-
ers. A recurring issue in statistical physics is how best to approximate joint
probability distributions with decoupled (and therefore far more tractable) dis-
tributions. It has recently been shown that the same information theoretic
mathematical structure, PC, underlies both issues. This structure provides a
formal model-independent defmition of the degree of rationality of a player and
of bounded rationality equilibria. This pair of papers extends previous work on
PC by introducing new computational approaches to effectively h d bounded
rationality equilibria of common-interest (team) games.

References

[l] D. H. Wolpert, “Factoring a canonical ensemble,” 2003, cond-mat/0307630.

[2] -, “Bounded rationality game theory and information theory,” 2004,
submitted.

[3] W. Macready, S. Bieniawski, and D. Wolpert, “Adaptive multi-agent sys-
tems for constrained optimization,” 2004, technical report IC-04123.

[4] C. F. Lee and D. H. Wolpert, “Product distribution theory for control of
multi-agent systems,” in Proceedings of AAMAS 04, 2004.

[5] S. Bieniawski and D. H. Wolpert, “Adaptive, distributed control of con-
strained multi-agent systems,” in Proceedings of AAMASO4, 2004.

[6] S. Bieniawski, D. H. Wolpert, and I. Kroo, “Discrete, continuous,
and constrained optimization using collectives,” in Proceedings of 10th

. . . .
.

AIAA/ISSMO Multadzsczplanary Analysas and Optzmazataon Conference,
Albany, New York, 2004, in press.

[7] D. H. Wolpert, “Finding bounded rational equilibria part i: Iterative fo-
cusing,” in Proceedangs of the Internataonal Socaety of Dynamac Games
Conference, 2004, 2004, in press.

[8] S. Airiau and D. H. Wolpert; “Product distribution theory and semi-
coordinate transformations,” 2004, submitted to AAMAS 04.

[9] D. H. Wolpert and S. Bieniawski, “Distributed control by lagrangian steep-
est descent,” in Proceedangs of CDCO4, 2004.

[101 -, “Adaptive distributed control: beyond single-instant categorical vari-
ables,” in Proceedangs of MSRASO4, A. S . et al, Ed. Springer Verlag, 2004.

[ll] N. Antoine, S. Bieniawski, I. Kroo, and D. H. Wolpert, “Fleet assignment
using collective intelligence,” in Proceedzngs of 42nd Aerospace Scaences
Meetang, 2004, aIAA-2004-0622.

[12] D. H. Wolpert and C. F. Lee, “Adaptive metropolis hastings sampling using

[13] D. H. Wolpert, “What information theory says about best response, binding

product distributions,” in Proceedangs of ICCS 04, 2004.

contracts, and collective intelligence,” in Proceedings of WEHIAO4, A. N.
et al, Ed.

D. H. Wolpert, K. Tumer, and J. Frank, “Using collective intelligence to
route internet traffic,” in Advances in Neural Information Processing Sys-
tems - 11.

D. H. Wolpert and K. Turner, “Optimal payoff functions for members of
c~llectives,’~ Advances in Complex Systems, vol. 4, no. 2/3, pp. 265-279,
2001.

-, “Collective intelligence, data routing and braess’ paradox,” Journal
of Artificial Intelligence Research, 2002.

D. H. Wolpert, “Theory of collective intelligence,” in Collectives and the
Design of Complex Systems, K. Tumer and D. H. Wolpert, Eds. New
York: Springer, 2003.

D. Wolpert, K. Turner, and E. Bandari, “Intelligent coordinates for search,”
2002, submitted.

D. H. Wolpert, “Information theory - the bridge connecting bounded ra-
tional game theory and statistical physics,” in Complex Engineering Sys-
tems, A. M. D. Braha and Y. Bar-Yam, Eds., 2004.

R. 0. Duda, P. E. Hart, and D. G. Stork, Pattern Classification (2nd ed.).
Wiley and Sons, 2000.

Springer Verlag, 2004.

MIT Press, 1999, pp. 952-958.

